力扣 232.用栈实现队列
题目描述
请你仅使用两个栈实现先入先出队列。队列应当支持一般队列支持的所有操作(push、pop、peek、empty):
实现 MyQueue 类:
void push(int x)
将元素 x 推到队列的末尾int pop()
从队列的开头移除并返回元素int peek()
返回队列开头的元素boolean empty()
如果队列为空,返回 true ;否则,返回 false
说明:
- 你只能使用标准的栈操作 —— 也就是只有 push to top, peek/pop fromtop, size, 和 is empty 操作是合法的。
- 你所使用的语言也许不支持栈。你可以使用 list 或者 deque(双端队列)来模拟一个栈,只要是标准的栈操作即可。
进阶:
- 你能否实现每个操作均摊时间复杂度为 O(1) 的队列?换句话说,执行 n 个操作的总时间复杂度为 O(n) ,即使其中一个操作可能花费较长时间。
示例:
输入:
["MyQueue", "push", "push", "peek", "pop", "empty"]
[[], [1], [2], [], [], []]
输出:
[null, null, null, 1, 1, false]
解释:
MyQueue myQueue = new MyQueue();
myQueue.push(1); // queue is: [1]
myQueue.push(2); // queue is: [1, 2] (leftmost is front of the queue)
myQueue.peek(); // return 1
myQueue.pop(); // return 1, queue is [2]
myQueue.empty(); // return false
提示:
1 <= x <= 9
-
最多调用 100 次 push、pop、peek 和 empty
-
假设所有操作都是有效的 (例如,一个空的队列不会调用 pop 或者 peek 操作)
解决方案
方法一:双栈
思路
将一个栈当作输入栈,用于压入 push 传入的数据;另一个栈当作输出栈,用于 pop 和 peek 操作。
每次 pop 或 peek 时,若输出栈为空则将输入栈的全部数据依次弹出并压入输出栈,这样输出栈从栈顶往栈底的顺序就是队列从队首往队尾的顺序。
代码
C++
class MyQueue {
private:
stack<int> inStack, outStack;
void in2out() {
while (!inStack.empty()) {
outStack.push(inStack.top());
inStack.pop();
}
}
public:
MyQueue() {}
void push(int x) {
inStack.push(x);
}
int pop() {
if (outStack.empty()) {
in2out();
}
int x = outStack.top();
outStack.pop();
return x;
}
int peek() {
if (outStack.empty()) {
in2out();
}
return outStack.top();
}
bool empty() {
return inStack.empty() && outStack.empty();
}
};
**Java **
class MyQueue {
Deque<Integer> inStack;
Deque<Integer> outStack;
public MyQueue() {
inStack = new LinkedList<Integer>();
outStack = new LinkedList<Integer>();
}
public void push(int x) {
inStack.push(x);
}
public int pop() {
if (outStack.isEmpty()) {
in2out();
}
return outStack.pop();
}
public int peek() {
if (outStack.isEmpty()) {
in2out();
}
return outStack.peek();
}
public boolean empty() {
return inStack.isEmpty() && outStack.isEmpty();
}
private void in2out() {
while (!inStack.isEmpty()) {
outStack.push(inStack.pop());
}
}
}
Golang
type MyQueue struct {
inStack, outStack []int
}
func Constructor() MyQueue {
return MyQueue{}
}
func (q *MyQueue) Push(x int) {
q.inStack = append(q.inStack, x)
}
func (q *MyQueue) in2out() {
for len(q.inStack) > 0 {
q.outStack = append(q.outStack, q.inStack[len(q.inStack)-1])
q.inStack = q.inStack[:len(q.inStack)-1]
}
}
func (q *MyQueue) Pop() int {
if len(q.outStack) == 0 {
q.in2out()
}
x := q.outStack[len(q.outStack)-1]
q.outStack = q.outStack[:len(q.outStack)-1]
return x
}
func (q *MyQueue) Peek() int {
if len(q.outStack) == 0 {
q.in2out()
}
return q.outStack[len(q.outStack)-1]
}
func (q *MyQueue) Empty() bool {
return len(q.inStack) == 0 && len(q.outStack) == 0
}
JavaScript
var MyQueue = function() {
this.inStack = [];
this.outStack = [];
};
MyQueue.prototype.push = function(x) {
this.inStack.push(x);
};
MyQueue.prototype.pop = function() {
if (!this.outStack.length) {
this.in2out();
}
return this.outStack.pop();
};
MyQueue.prototype.peek = function() {
if (!this.outStack.length) {
this.in2out();
}
return this.outStack[this.outStack.length - 1];
};
MyQueue.prototype.empty = function() {
return this.outStack.length === 0 && this.inStack.length === 0;
};
MyQueue.prototype.in2out = function() {
while (this.inStack.length) {
this.outStack.push(this.inStack.pop());
}
}
C
typedef struct {
int* stk;
int stkSize;
int stkCapacity;
} Stack;
Stack* stackCreate(int cpacity) {
Stack* ret = malloc(sizeof(Stack));
ret->stk = malloc(sizeof(int) * cpacity);
ret->stkSize = 0;
ret->stkCapacity = cpacity;
return ret;
}
void stackPush(Stack* obj, int x) {
obj->stk[obj->stkSize++] = x;
}
void stackPop(Stack* obj) {
obj->stkSize--;
}
int stackTop(Stack* obj) {
return obj->stk[obj->stkSize - 1];
}
bool stackEmpty(Stack* obj) {
return obj->stkSize == 0;
}
void stackFree(Stack* obj) {
free(obj->stk);
}
typedef struct {
Stack* inStack;
Stack* outStack;
} MyQueue;
MyQueue* myQueueCreate() {
MyQueue* ret = malloc(sizeof(MyQueue));
ret->inStack = stackCreate(100);
ret->outStack = stackCreate(100);
return ret;
}
void in2out(MyQueue* obj) {
while (!stackEmpty(obj->inStack)) {
stackPush(obj->outStack, stackTop(obj->inStack));
stackPop(obj->inStack);
}
}
void myQueuePush(MyQueue* obj, int x) {
stackPush(obj->inStack, x);
}
int myQueuePop(MyQueue* obj) {
if (stackEmpty(obj->outStack)) {
in2out(obj);
}
int x = stackTop(obj->outStack);
stackPop(obj->outStack);
return x;
}
int myQueuePeek(MyQueue* obj) {
if (stackEmpty(obj->outStack)) {
in2out(obj);
}
return stackTop(obj->outStack);
}
bool myQueueEmpty(MyQueue* obj) {
return stackEmpty(obj->inStack) && stackEmpty(obj->outStack);
}
void myQueueFree(MyQueue* obj) {
stackFree(obj->inStack);
stackFree(obj->outStack);
}
复杂度分析
时间复杂度:push 和 empty 为 O(1),pop 和 peek 为均摊 O(1)。对于每个元素,至多入栈和出栈各两次,故均摊复杂度为 O(1)。
空间复杂度:O(n)。其中 n 是操作总数。对于有 n 次 push 操作的情况,队列中会有 n 个元素,故空间复杂度为 O(n)。
酷客网相关文章:
评论前必须登录!
注册